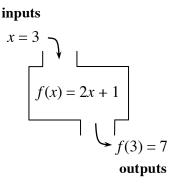
A relationship between the input values (usually x) and the output values (usually y) is called a function if for each input value, there is no more than one output value. Functions can be represented with an illustration of a "function (input–output) machine", as shown in Lesson 1.2.3 of the textbook and in the diagram in Example 1 below. Note: f(x) = 2x + 1 is equivalent to y = 2x + 1.

The set of all possible inputs is called the **domain**, while the set of all possible outputs is called the **range**.

For additional information about functions, function notation, and domain and range, see the Math Notes box in Lesson 1.2.3.

Example 1

The inputs of a function are "x"s and the outputs are "f(x)"s. Numbers are input into the function machine labeled f one at a time, and then the function performs the indicated operation on each input to determine its corresponding output. For example, when x = 3 is put into the function machine f at right, the function multiplies the 3 by 2 and then adds 1 to get the corresponding output, which is 7. The notation f(3) = 7 shows that the function named f connects the input 3 with the corresponding output 7. This also means the point (3,7) lies on the graph of the function.



Example 2

a. If
$$f(x) = \sqrt{x-2}$$
 then $f(11) = ?$
$$f(11) = \sqrt{11-2}$$

$$f(11) = \sqrt{9}$$

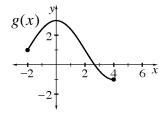
$$f(11) = 3$$

b. If
$$g(x) = 3 - x^2$$
 then $g(5) = ?$
$$g(5) = 3 - (5)^2$$
$$g(5) = 3 - 25$$
$$g(5) = -22$$

c. If
$$f(x) = \frac{x+3}{2x-5}$$
 then $f(2) = ?$
$$f(2) = \frac{2+3}{2 \cdot 2-5}$$
$$f(2) = \frac{5}{-1}$$
$$f(2) = -5$$

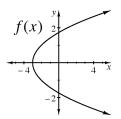
Example 3

A relationship in which each input has only one output is called a **function**.



g(x) is a function; each input (x) has only one output (y).

$$g(-2) = 1$$
, $g(0) = 3$, $g(4) = -1$, and so on.



f(x) is not a function: each input greater than -3 has two y-values associated with it.

$$f(1) = 2$$
 and $f(1) = -2$.

Example 4

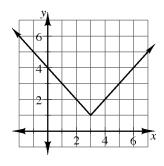
The set of all possible inputs is called the **domain**, while the set of all possible outputs of is called the **range**.

In Example 3 above, the domain of g(x) is $-2 \le x \le 4$, or "all numbers between -2 and 4". The range of g(x) is $-1 \le g(x) \le 3$ or "all numbers between -1 and 3".

The domain of f(x) in Example 3 above is $x \ge -3$ or "any real number greater than or equal to 3," since the graph starts at x = -3 and continues forever to the right. Since the graph of f(x) extends in both the positive and negative y (vertical) directions forever, the range is "all real numbers".

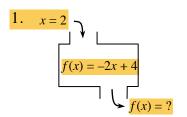
Example 5

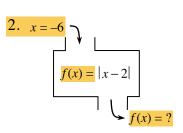
For the graph at right, since the graph extends forever horizontally in both directions, the domain is "all real numbers". The y-values start at y = 1 and increase, so the range is $y \ge 1$ or "all numbers greater or equal to 1".

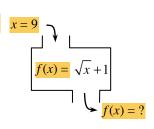


Problems

Determine the outputs for the following function machines and the given inputs.







4.
$$f(x) = (5 - x)^2$$

 $f(8) = ?$

5.
$$g(x) = x^2 - 5$$

 $g(-3) = ?$

6.
$$f(x) = \frac{2x+7}{x^2-9}$$
$$f(3) = ?$$

7.
$$h(x) = 5 - \sqrt{x}$$

 $h(9) = ?$

$$h(x) = \sqrt{5 - x}$$

$$h(9) = ?$$

9.
$$f(x) = -x^2$$

 $f(4) = ?$

Determine if each graph below represents a function.

