USING ELIMINATION (ADDITION) TO FIND THE POINT OF INTERSECTION OF TWO LINES

The **elimination** method can be used to solve a system of linear equations. By adding or subtracting the two linear equations in a way that eliminates one of the variables, a single variable equation is left. Also see the textbook, pages 250, 252, 254, and 264.

Example 1

Solve: $\begin{array}{c} x + 2y = 16 \\ x + y = 2 \end{array}$

First decide whether to add or subtract the equations. Remember that the addition or subtraction should <u>eliminate</u> one variable. In the system above, the x in each equation is positive, so we need to subtract, that is, change all the signs of the terms in the second equation.

$$\begin{array}{c} x + 2y = 16 \\ -(x + y = 2) \end{array} \Rightarrow \begin{array}{c} x + 2y = 16 \\ -x - y = -2 \end{array} \Rightarrow y = 14 \end{array}$$

Substitute the solution for y into either of the original equations to solve for the other variable, x.

$$x + 2(14) = 16 \implies x = -12$$

Check your solution (-12, 14) in the second equation. You could also use the first equation to check your solution.

 $-12 + 14 = 2 \implies 2 = 2\sqrt{}$

Example 2

Solve:
$$2x + 3y = 10$$

 $3x - 4y = -2$

Sometimes the equations need to be adjusted by multiplication before they can be added or subtracted to eliminate a variable. Multiply one or both equations to set them up for elimination.

Multiply the first equation by 3: $3(2x + 3y) = 10(3) \implies 6x + 9y = 30$

Multiply the second equation by -2: $-2(3x - 4y) = -2 \cdot (-2) \implies -6x + 8y = 4$

Decide whether to add or subtract the equations to eliminate one variable. Since the x-terms are additive opposites, add these equations.

$$6x + 9y = 30$$

-6x + 8y = 4
17y = 34 so y = 2

Substitute the solution for y into either of the original equations to solve for the other variable.

$$2x + 3(2) = 10 \implies 2x = 4 \implies x = 2 \sqrt{2x}$$

Check the solution (2, 2) in the second equation. $3(2) - 4(2) = -2 \implies 6 - 8 = -2 \implies -2 = -2$

Extra Practice

Solve each system of linear equations using the Elimination Method.

1. $x + y = -4$ -x + 2y = 13 4. $x + 3y = 1$ 2x + 3y = -4	2. $3x - y = 1$ -2x + y = 2 5. $x - 5y = 1$ x - 4y = 2	CFS:1. System is solved with elimination2. All steps are shown3. Solution is written as an order pair (x, y)4. Solution is checked
7. $x + y = 10$	8. $x + 2y = 21$	9. $4x + 3y = 7$
15x + 28y = 176	9x + 24y = 243	2x - 9y = 35
10. $2x + 3y = 0$	11. $7x - 3y = 37$	12. $5x - 4y = 10$
6x - 5y = -28	2x - y = 12	3x - 2y = 6
13. $x - 7y = 4$	14. $4x + y = 3$	15. $2x - 3y = 50$
3x + y = -10	3x + 5y = -19	7x + 8y = -10
16. $5x + 6y = 16$	17. $3x + 2y = 14$	18. $2x + 3y = 10$
3x - 4y = 2	2x + 3y = 1	5x - 4y = 2
19. $5x + 2y = 9$ 2x + 3y = -3	20. $10x + 3y = 15$ 3x - 2y = -10	

Answers

1. (-7, 3)	2. (3, 8)	3. (8, -3)	4. (-5, 2)
5. (6, 1)	6. (6, 10)	7. (8, 2)	8. (3, 9)
9. (4, -3)	10. (-3, 2)	11. (1, -10)	12. (2, 0)
13. (-3, -1)	14. (2, -5)	15. (10, -10)	16. (2, 1)
17. (8, -5)	18. (2, 2)	19. (3, -3)	20. (0, 5)

ALGEBRA Connections