USING ELIMINATION (ADDITION) TO FIND

The elimination method can be used to solve a system of linear equations. By adding or subtracting the two linear equations in a way that eliminates one of the variables, a single variable equation is left. Also see the textbook, pages 250, 252, 254, and 264.

Example 1

Solve: $\quad \begin{aligned} x+2 y & =16 \\ x+y & =2\end{aligned}$
First decide whether to add or subtract the equations. Remember that the addition or subtraction should eliminate one variable. In the system above, the x in each equation is positive, so we need to subtract, that is, change all the signs of the terms in the second equation.

$$
\begin{array}{r}
x+2 y=16 \\
-(x+y=2)
\end{array} \Rightarrow \begin{gathered}
x+2 y=16 \\
-x-y=-2
\end{gathered} \Rightarrow y=14
$$

Substitute the solution for y into either of the original equations to solve for the other variable, x .
$x+2(14)=16 \Rightarrow x=-12$

Check your solution $(-12,14)$ in the second equation. You could also use the first equation to check your solution.

$$
-12+14=2 \Rightarrow 2=2 \sqrt{ }
$$

Example 2

Solve: $\quad \begin{aligned} & 2 x+3 y=10 \\ & 3 x-4 y=-2\end{aligned}$
Sometimes the equations need to be adjusted by multiplication before they can be added or subtracted to eliminate a variable. Multiply one or both equations to set them up for elimination.

Multiply the first equation by 3 :
$3(2 x+3 y)=10(3) \Rightarrow 6 x+9 y=30$
Multiply the second equation by -2 :

$$
-2(3 x-4 y)=-2 \cdot(-2) \Rightarrow-6 x+8 y=4
$$

Decide whether to add or subtract the equations to eliminate one variable. Since the x-terms are additive opposites, add these equations.

$$
\begin{aligned}
6 x+9 y & =30 \\
-6 x+8 y & =4 \\
\hline 17 y=34 & \text { so } y=2 .
\end{aligned}
$$

Substitute the solution for y into either of the original equations to solve for the other variable.

$$
2 x+3(2)=10 \Rightarrow 2 x=4 \quad \Rightarrow \quad x=2 \sqrt{ }
$$

Check the solution $(2,2)$ in the second equation.

$$
3(2)-4(2)=-2 \Rightarrow 6-8=-2 \Rightarrow-2=-2
$$

Solve each system of linear equations using the Elimination Method.

1. $\begin{aligned} x+y=-4 \\ -x+2 y=13\end{aligned}$
2. $x+3 y=1$
$2 x+3 y=-4$
3. $x+y=10$
$15 x+28 y=176$
4. $\begin{aligned} 2 x+3 y & =0 \\ 6 x-5 y & =-28\end{aligned}$
5. $\begin{aligned} x-7 y & =4 \\ 3 x+y & =-10\end{aligned}$
6. $5 x+6 y=16$
$3 x-4 y=2$
7. $5 x+2 y=9$
$2 x+3 y=-3$
8. $3 x-y=1$
$-2 x+y=2$
9. $x-5 y=1$
$x-4 y=2$
10. $x+2 y=21$
$9 x+24 y=243$
11. $7 x-3 y=37$
$2 x-y=12$
12. $4 x+y=3$
$3 x+5 y=-19$
13. $3 x+2 y=14$
$2 x+3 y=1$
14. $10 x+3 y=15$
$3 x-2 y=-10$

CFS:

1. System is solved with elimination
2. All steps are shown
3. Solution is written as an order pair (x, y)
4. Solution is checked
5. $4 x+3 y=7$
$2 x-9 y=35$
6. $5 x-4 y=10$
$3 x-2 y=6$
7. $2 x-3 y=50$
$7 x+8 y=-10$
8. $2 x+3 y=10$
$5 x-4 y=2$

Answers

1. $(-7,3)$
2. $(3,8)$
3. $(8,-3)$
4. $(-5,2)$
5. $(6,1)$
6. $(6,10)$
7. $(8,2)$
8. $(3,9)$
9. $(4,-3)$
10. $(-3,2)$
11. $(1,-10)$
12. $(2,0)$
13. $(-3,-1)$
14. $(2,-5)$
15. $(10,-10)$
16. $(2,1)$
17. $(8,-5)$
18. $(2,2)$
19. $(3,-3)$
20. $(0,5)$
