\qquad Period: \qquad Date: \qquad

Ch.5, L8 - Algebraically Determining the Number of Solutions

Objective: Given a system of equations, SWBAT determine if the system has one, no, or an infinite number of solutions algebraically

Think About It: Three systems of equations have been graphed below. Determine the number of solutions to the system and solve the systems algebraically using either substitution or elimination.

	System 1	System 2	System 3
	$\left\{\begin{array}{c} y=x+2 \\ y=-x+4 \end{array}\right.$	$\left\{\begin{array}{l} y=\frac{2}{3} x+1 \\ y=\frac{2}{3} x-1 \end{array}\right.$	$\left\{\begin{array}{l} 2 x-3 y=-3 \\ 4 x-6 y=-6 \end{array}\right.$

Big Idea:

CFS:

1. Most efficient method to solve system is identified
2. All steps are shown
3. Number of solutions is determined and justified
\qquad Period: \qquad Date: \qquad

Partner Practice:

1. Given the different graphs and work shown below, determine the number of solutions each situation will have.

	$\begin{gathered} y=\underbrace{3 x+1}_{\downarrow} \quad 4 y=12 x+3 \\ 4 y=12 x+3 \\ 4(3 x+1)=12 x+3 \\ 12 x+4=12 x+3 \\ \frac{-12 x \quad=-12 x}{4}=3 \end{gathered}$	b)	$y=5 x-1 \quad 2 y=3 x+12$ 1 $2 y=3 x+12$ $2(5 x-1)=3 x+12$ $10 x-2=3 x+12$ $-3 x=-3 x$ $7 x-2=12$ $+2=+2$ $7 x=14$ $\frac{7 x}{7}=\frac{14}{7}$ $x=2$ $y=5 x-1$ $y=5(2)-1$ $y=9$

2. How many solutions does the following system of equations have? Solve the system to prove your answer.

$$
\left\{\begin{array}{c}
y=2 x+3 \\
-4 x+2 y=6
\end{array}\right.
$$

Method: \qquad

CFS:

1. Most efficient method to solve system is identified
2. All steps are shown
3. Number of solutions is determined and justified
\qquad Period: \qquad Date: \qquad
4. How many solutions will there be to the following system of equations? Explain your answer.

$$
\left\{\begin{array}{c}
2 x+2 y=4 \\
2 x+2 y=-3
\end{array}\right.
$$

Method: \qquad
4. How many solutions does the following system of equations have? Explain your answer and prove it is correct by solving the system.
$\left\{\begin{array}{l}y=-2 x+4\end{array}\right.$
$\{3 y+6 x=12$

Method: \qquad

CFS:

1. Most efficient method to solve system is identified
2. All steps are shown
3. Number of solutions is determined and justified
\qquad Period: \qquad Date: \qquad
4. What value of b will result in the system having no solution? Solve your system to prove your answer is correct.

$$
\left\{\begin{array}{c}
6 x-4 y=24 \\
y=-b(x+1)
\end{array}\right.
$$

Method: \qquad
6. Does the line that passes through the points $(0,1)$ and $(2,3)$ intersect the line that passes through the points $(2,5)$ and ($-2,1$)? Explain.

Method: \qquad

CFS:

1. Most efficient method to solve system is identified
2. All steps are shown
3. Number of solutions is determined and justified
\qquad Period: \qquad Date: \qquad
4. Consider the following two lines. Will they ever intersect? Explain how you know.

Line A: passes through the points $(2,5)$ and $(7,11)$
Line B: passes through the points $(0,0)$ and $(7,9)$
Method: \qquad

8. Two equations form a system of linear equations. The first equation in the system is defined as $2 x+3 y=3$. The second equation in the system, when graphed, will pass through the points $(3,-4)$ and $(-6,2)$. Determine the number of solutions the system has. If there is one solution, calculate and check it.

Method: \qquad

CFS:

1. Most efficient method to solve system is identified
2. All steps are shown
3. Number of solutions is determined and justified
\qquad Period: \qquad Date: \qquad
4. Write a system of equations not in slope-intercept form that will have an infinite number of solutions and explain what you could do to the system to change the number of solutions to be zero.

Method: \qquad

1. Most efficient method to solve system is identified
2. All steps are shown
3. Number of solutions is determined and justified
