\qquad Period: \qquad Date: \qquad

Ch.3, L6 - Types of Solutions

Objective: Given a linear equation, I will identify and create equations that have no solution or are an identity.
Think About It: Solve the following equation to determine the solution.

A. $3 x+4-x=2 x+3$	B. $2(3 x-1)=6 x-2$

Big Idea:

Partner Practice: (Low Difficulty)

1. Determine the number of solutions for each equation:

a. $2 x-x+7=x+3+4$	b. $-2(x+1)=-5+(-2 x)$	c. $2 x+9=3(x-3)$	

CFS:

1. Equations start with definition of the number of solutions (Ex: $a=a, a=b$ or $x=a$)
2. Properties of equality are used to add more to the equation
3. When prompted, combining like-terms and/or the distributive property is included
4. Final equation is checked by simplifying
\qquad Period: \qquad Date: \qquad
5. Complete the equation to satisfy the condition:
a. No Solution: $-x+7 x-8=$ \qquad
b. Infinite Solutions:

$$
6 x+\ldots
$$

Partner Practice: (Medium Difficulty)

3. Which value of a and b would make the equation $5 x+a x-7=6 x+b$ have NO solution? Explain your answer.

4. Write a multistep equation that has one solution. To simplify the equation, the following steps are required:

- Using the distributive property.
- Combining like terms.
- Moving variables to the same side.

1. Equations start with definition of the number of solutions (Ex: $a=a, a=b$ or $x=a$)
2. Properties of equality are used to add more to the equation
3. When prompted, combining like-terms and/or the distributive property is included
4. Final equation is checked by simplifying
\qquad Period: \qquad Date: \qquad
5. Explain how you can use properties of equality to write balanced equations.
6. Step A: Write a multistep equation that has no solution. To simplify the equation, the following steps are required:

- Using the distributive property.
- Combining like terms.
- Moving variables to the same side.

Step B: Describe how you would change your equation to have an infinite number of solutions.
7. Step A: Create an equation that will have an infinite number of solutions, requires the distributive property on the left side of the equation, and combining like-terms on the right side of the equation.

Step B: Revise your equation in Step A with one operation to create an equation with no solution and check it.

CFS:

1. Equations start with definition of the number of solutions (Ex: $a=a, a=b$ or $x=a$)
2. Properties of equality are used to add more to the equation
3. When prompted, combining like-terms and/or the distributive property is included
4. Final equation is checked by simplifying
\qquad Period: \qquad Date: \qquad

Partner Practice: (Hard Difficulty)

8. Write a multistep equation that has no solution. The equation must meet the following criteria:

- Using the distributive property.
- The coefficient of the parentheses to the distributive property is a fraction
- Combining like terms.
- Variables start all on the same side as where the distributive property is being used.
- At least two more rational numbers.
- Minimum of 6 terms total.

9. Explain how you could change the equation to quickly have an infinite number of solutions and/or one solution.

CFS:

1. Equations start with definition of the number of solutions (Ex: $a=a, a=b$ or $x=a$)
2. Properties of equality are used to add more to the equation
3. When prompted, combining like-terms and/or the distributive property is included
4. Final equation is checked by simplifying
