CH.3, L5 - EXIT TICKET

Objective: Given a literal equation, I will solve by isolating the identified variable using inverse operations.

Self-	I mastered the learning	I am almost there.	Need more practice and
Assessment	objective today.		feedback.
Teacher	You mastered the learning	You are almost there.	You need more practice and
Feedback	objective today.		feedback.

- 1. Solve each literal equation for the indicated variable:
 - a. Solve for "c": a + cx = b

b. Solve for "x": $\frac{1}{2}x - g = m$

2. The ideal gas law can be used to determine the number of molecules in a system and is shown by: PV = nRT In the equation, n is the variable that is used by scientists to determine the number of molecules. What equation could you write that is solved for the number of molecules?

- 1. Inverse operations are used
- 2. Equation is kept balanced throughout entire process
- 3. Equation is solved vertically and all work shown to isolate the specified variable