\qquad Date: \qquad

CH. 1, L3 - DO NOW

Objective: I will evaluate and interpret an algebraic rule in function notation.
Do Now: Equations that are functions can be written in a form called function notation. For example, the equation $\mathrm{y}=$ $3 x-8$ is a function and can be written as $f(x)=3 x-8$.

For each representation below, evaluate for $x=-2$. Explain how the "function notation" shows a clearer relationship between the input of $x=-2$ and the output you found.

Equation:

$y=3 x-8$

Function Notation:

$f(x)=3 x-8$

Big Idea:

1. Highlight important information and circle the question/prompt.
2. Input and output are annotated
3. Substitution is completed for entire function
4. Function is evaluated vertically and correctly
5. Answer is boxed
\qquad Date: \qquad
Objective: I will evaluate and Interpret an algebraic rule in function notation.
Do Now: Equations that are functions can be written in a form called function notation. For example, the equation $\mathrm{y}=$ $3 x-8$ is a function and can be written as $f(x)=3 x-8$.

For each representation below, evaluate for $x=-2$. Explain how the "function notation" shows a clearer relationship between the input of $x=-2$ and the output you found.

Equation:

$$
y=3 x-8
$$

substitute x with -2

Function Notation:

$$
f(x)=3 x-8
$$

(1) substitute x with -2
$=3()-8$

 1

Function notation shows

Big Idea:

CH. 1, L3 -EXIT SLIP

CTS:

1. Highlight important Information and circle the question/prompt.
2. Input and output are annotated
3. Substitution is completed for entire function
4. Function is evaluated vertically and correctly
5. Answer Is boxed
