<u>Сн. 6, L1 – Ехіт Slip</u>

Objective: Given two congruent triangles, I will identify corresponding congruent parts by analyzing a diagram and/or congruence statement. I will also distinguish between proper and improper names for a given angle.

- 1. Use the diagram to answer each question.
 - a. Could the marked angle be named $\angle VRS$? Explain.

_____ because ______

b. Could the marked angle be named $\angle V$? Explain.

_____ because ______

Integrated Math I

Name: ____

Period: _____ Date: _____

<u>Сн. 6, L1 – Ехіт Slip</u>

Objective: Given two congruent triangles, I will identify corresponding congruent parts by analyzing a diagram and/or congruence statement. I will also distinguish between proper and improper names for a given angle.

- 1. Use the diagram to answer each question.
- a. Could the marked angle be named $\angle VRS$? Explain.

_____ because ______

b. Could the marked angle be named $\angle V$? Explain.

____ because _____

For question #2 – 7, below, assume that $\Delta XRP \cong \Delta AZV$.

Classify each statement below as *true* or *false*. If the statement is false, rewrite it so that it is true.

2. $\angle R \cong \angle V$ is				
3. $\overline{AV} \cong \overline{XP}$ is				
4. $\Delta XPR \cong \Delta AZV$ is				
Fill in the blank:				
5. ∠ <i>PXR</i> ≅	6. <i>XR</i> ≅	7.	$\Delta ZAV \cong$	
8. Multiple choice: If $\Delta J K$	$\Delta L \cong \Delta MNO$, which statement be	elow is <u>always</u> true?		
(A) $\angle KLJ \cong \angle NMO$	(B) $\angle KJL \cong \angle MON$	(C) $\overline{JL} \cong \overline{MO}$	(D) $\overline{JK} \cong \overline{ON}$	
 9. In the diagram below, A What is m∠C? Explain. m∠C =° because 	$\Delta ACB \cong \Delta XZY, m \angle X = 40^{\circ}, and n$	<i>m∠Z</i> = 84°.		>r
For question #2 – 7, belo Classify each statement bel	w, assume that $\Delta XRP \cong \Delta AZV$ low as <i>true</i> or <i>false</i> . If the staten	nent is false, rewrite it :	so that it is true.	
10. $\angle R \cong \angle V$ is				
11. $\overline{AV} \cong \overline{XP}$ is				
12. $\Delta XPR \cong \Delta AZV$ is				
Fill in the blank:				

13. ∠*PXR* ≅_____

14. $\overline{XR} \cong$

15. Δ*ZAV* ≅_____

16. Multiple choice: If $\Delta JKL \cong \Delta MNO$, which statement below is **<u>always</u>** true?

(E)	$\angle KLJ \cong \angle NMO$	(F) $\angle KJL \cong \angle MON$	(G) $\overline{IL} \cong \overline{MO}$	(H) $\overline{IK} \cong \overline{ON}$
· ·	j		(-))=====	(,)

17. In the diagram below, $\triangle ACB \cong \triangle XZY$, $m \angle X = 40^\circ$, and $m \angle X$	$Z = 84^{\circ}$.
What is $m \angle C$? Explain.	

 $m \angle C = ___^\circ$ because $___$

