\qquad Period: \qquad Date: \qquad

Ch.5, L1 - GRAPHICAL Solutions To Systems of Equations

Objective: Given a system of functions, I will graph and interpret the intersection of two functions as $f(x)=g(x)$ and graphically justify when a system has infinite or no solution.

Think About It: The function $f(x)=\frac{1}{2}(2)^{x}$ is graphed below. If $g(x)=-\frac{2}{3} x+6$, graphically show where $f(x)=$ $g(x)$. Prove your answer is correct by substituting the point into each function.

Key Point \#1:
The \qquad to a of equations is the \qquad of intersection when functions are graphed
\qquad .

Keywords: point, satisfies

Big Idea:

CFS:

1. System is graphed and labeled on the same coordinate grid
2. Number of solutions is determined and justified
3. Solution is checked when it exists
\qquad Period: \qquad Date: \qquad

Interaction with New Material:

Ex. 1) For each of the equations below, determine the number of solutions that exist when in a system with the linear function already graphed in the coordinate plane. If one solution exists, determine the solution and check it.
a. $x+2 y=6$

b. $2 x+y=6$
c. $2 y=-x-6$

1. System is graphed and labeled on the same coordinate grid
2. Number of solutions is determined and justified
3. Solution is checked when it exists
\qquad Period: \qquad Date: \qquad

Partner Practice:

1. Solve the system of equations graphically and prove the solution is correct with substitution.

$$
\left\{\begin{array}{l}
y=\frac{5}{2} x-2 \\
y=\frac{1}{2} x+2
\end{array}\right.
$$

Check:

2. For the two systems below, determine the number of solutions graphically.

$$
\left\{\begin{array}{l}
y=-2 x+2 \\
y=-2 x-2
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
y=\frac{6}{2} x-4 \\
y=3 x-4
\end{array}\right.
$$

CFS:

1. System is graphed and labeled on the same coordinate grid
2. Number of solutions is determined and justified
3. Solution is checked when it exists
\qquad Period: \qquad Date: \qquad
4. The function $g(x)$ is graphed below with the corresponding equation $g(x)=\frac{1}{2} x^{2}-2$. Determine all the solutions that will satisfy $g(x)=h(x)$ and verify they are correct if $h(x)=x+2$.

Check:

4. Which of the following best describes the graph of this system of equations. Explain your reasoning and justify your choice.

$$
\left\{\begin{array}{l}
y=-2 x+3 \\
5 y=-10 x+15
\end{array}\right.
$$

a) two identical lines
b) two parallel lines
c) two lines intersecting in only one point
d) two lines intersecting in only two points

CFS:

1. System is graphed and labeled on the same coordinate grid
2. Number of solutions is determined and justified
3. Solution is checked when it exists
\qquad Period: \qquad Date: \qquad
4. Mark claims that $(3,-3)$ is the solution to the system of equations below. Is he correct? Justify your answer.

$$
\left\{\begin{array}{l}
y=-2 x+3 \\
6 x+3 y=9
\end{array}\right.
$$

Check:

6. SAT Problem!

\qquad

Check:

The graph of the function f, defined by
$f(x)=-\frac{1}{2}(x-4)^{2}+10$, is shown in the $x y$-plane above. If the function g (not shown) is defined by
$g(x)=-x+10$, what is one possible value of a such
that $f(a)=g(a)$?
CFS:

1. System is graphed and labeled on the same coordinate grid
2. Number of solutions is determined and justified
3. Solution is checked when it exists
\qquad Period: \qquad Date: \qquad
4. Write three generalized rules for being able to determine if a system will have one, no, or an infinite number of solutions just by looking at the equations and not graphing.
5. Without graphing, write three different equations in point-slope form that would have one, no, and an infinite number of solutions when in a system with the equation $2 y-5 x=6$. Once you have determined the equations, graph and check that they satisfy the constraints.

6. System is graphed and labeled on the same coordinate grid
7. Number of solutions is determined and justified
8. Solution is checked when it exists
