\qquad Period: \qquad Date: \qquad

Ch. 5, L1- Exit Slip

Objective: Given a system of functions, I will graph and interpret the intersection of two functions as $f(x)=g(x)$ and graphically justify when a system has infinite or no solution.

1. Four equations are listed below:

$$
\begin{aligned}
& 2 y=x+2 \\
& y-\frac{1}{2} x=-1 \\
& -2 x+4 y=4 \\
& \frac{1}{2} y=-x+2
\end{aligned}
$$

Name: \qquad Period: \qquad Date: \qquad

Ch. 5, L1- Exit Slip

Objective: Given a system of functions, I will graph and interpret the intersection of two functions as $f(x)=g(x)$ and graphically justify when a system has infinite or no solution.
2. Four equations are listed below:

$$
\begin{aligned}
& 2 y=x+2 \\
& y-\frac{1}{2} x=-1 \\
& -2 x+4 y=4 \\
& \frac{1}{2} y=-x+2
\end{aligned}
$$

a. Which combination of equations will result in an infinite number of solutions?
b. Which combination of equations will result in no solutions?
c. Given the four equations, pick two that will form a system that has one unique solution. Determine the solution graphically and prove it satisfies both functions.
d. Which combination of equations will result in an infinite number of solutions?
e. Which combination of equations will result in no solutions?
f. Given the four equations, pick two that will form a system that has one unique solution. Determine the solution graphically and prove it satisfies both functions.

