\qquad Period: \qquad Date: \qquad

Ch. 4, L1 - EXIT SLIP

Objective: Given a function pattern, I will distinguish between arithmetic and geometric sequences by identifying the growth rate/factor.

1. Consider the sequence 1,4 , \qquad . Give the next five terms if,

a. The sequence is arithmetic.	b. The sequence is geometric

\qquad Period: \qquad Date: \qquad

Ch. 4, L1 - Exit SliP

Objective: Given a function pattern, I will distinguish between arithmetic and geometric sequences by identifying the growth rate/factor.

1. Consider the sequence 1,4 , \qquad . Give the next five terms if,

a. The sequence is arithmetic.	b. The sequence is geometric

2. The table below shows the rebound height of a bouncy ball dropped from the roof of the school. Note that the 0 bounce represents the starting height.

Bounce	Rebound Height (cm)
0	800
1	475
2	290
3	175
4	100
5	60

Is the data for rebound height best described as an arithmetic or geometric sequence? Justify your answer.
2. The table below shows the rebound height of a bouncy ball dropped from the roof of the school. Note that the 0 bounce represents the starting height.

Bounce	Rebound Height (cm)
0	800
1	475
2	290
3	175
4	100
5	60

Is the data for rebound height best described as an arithmetic or geometric sequence? Justify your answer.

