\qquad Period: \qquad Date: \qquad

Ch. 2, L1 - Linear ROC Tables and Graphs

Objective: Given a graph, table, or situation, I will determine and interpret the rate of change of a linear function.
Think About It: A scientist is measuring the height of a plant every day to study how fast it grows. The data is record in a table and in a graph shown below. Determine the rate of change for the growth of the plant.

Height	3	5	7	9	11	13
Day	0	3	6	9	12	15

Big Idea: Linear functions have a constant rate of change represented as $\frac{\Delta y}{\Delta x}$.

1. Important information is highlighted and question/prompt is circled
2. Points are identified in tables and graphs
3. ROC formula is written out and substituted for $O R$ ROC formulas in function notation are annotated for inputs and outputs
4. Question/prompt is addressed in a complete sentence
\qquad Period: \qquad Date: \qquad

Interaction with New Material:

Ex. 1) Derive the general formula for the rate of change of functions using the basic linear function $f(x)=x$ finding the rate of change from $x=a$ to $x=b$.

Ex. 2) Michael is driving from New Haven to Washington D.C. The function f describes the distance he has traveled after x number of hours. What does the equation $\frac{f(5)-f(3)}{2}=68$ represent given the context? If this relationship is linear, what will be the value of $\frac{f(6)-f(5)}{1}$?

1. Important information is highlighted and question/prompt is circled
2. Points are identified in tables and graphs
3. ROC formula is written out and substituted for $O R$ ROC formulas in function notation are annotated for inputs and outputs
4. Question/prompt is addressed in a complete sentence
\qquad Period: \qquad Date: \qquad

Partner Practice: (Low Difficulty)

1. Determine the rate of change of the graph below.

\qquad
\qquad
\qquad
\qquad
2. Determine the rate of change of the table and describe the units of the rate of change if the table is showing the volume of a glass of water evaporating over time.

Volume (mL)	50	46	42	38	34
Time (hours)	0	2	4	6	8

3. Find the rate of change of the function $f(x)$ given, $f(5)=15$ and $f(7)=25$.
4. Important information is highlighted and question/prompt is circled
5. Points are identified in tables and graphs
6. ROC formula is written out and substituted for $O R$ ROC formulas in function notation are annotated for inputs and outputs
7. Question/prompt is addressed in a complete sentence
\qquad Period: \qquad Date: \qquad

Partner Practice: (Medium Difficulty)

4. Marcus is trying to figure out his score on a recent math test. He writes a function f that describes his score as a function of the number of questions he gets right, x. Given this information, what does the equation below represent?

$$
\frac{f(20)-f(17)}{20-17}=5
$$

5. Explain how the equation above is related to the slope formula you learned about in $8^{\text {th }}$ grade $\frac{\Delta y}{\Delta x}$.
6. Prove that the rate of change of a linear function is constant given the table below of the linear function $g(x)$. Explain your proof.

$g(x)$	5	17	29	41	53
x	3	6	9	12	15

1. Important information is highlighted and question/prompt is circled
2. Points are identified in tables and graphs
3. ROC formula is written out and substituted for $O R$ ROC formulas in function notation are annotated for inputs and outputs
4. Question/prompt is addressed in a complete sentence
